
Adafruit MicroPython TSL2561
Documentation

Release 1.0

Radomir Dopieralski

Sep 27, 2017

Contents

1 tsl2561 module 3
1.1 TSL2561 . 3
1.2 Classes for Different Packages . 4

2 Usage Examples 5

3 Indices and tables 7

Python Module Index 9

i

ii

Adafruit MicroPython TSL2561 Documentation, Release 1.0

Contents:

Contents 1

Adafruit MicroPython TSL2561 Documentation, Release 1.0

2 Contents

CHAPTER 1

tsl2561 module

TSL2561

class tsl2561.TSL2561(i2c[, address])
The basic class for handling the communication with the sensor.

The i2c parameter is an initialized I2C bus, and the optional address specifies which sensor to connect to, if
you have more than one and have changed their addresses with the Addr pin.

May raise a RuntimeError if connected to a wrong model of sensor.

active([True|False])
Get or set the power status of the sensor.

If called without any parameters, returns the current status (True for active, False for inactive). If called
with a parameter, sets the status.

The functions that require the sensor to be active will activate it for the time necessary, and then return it
to the previous state.

gain([1|16])
Get or set the measurement gain of the sensor.

integration_time([0|13|101|402])
Get or set the integraton time for measurements in milliseconds.

When set to 0, manual integration time is enabled.

Note that with manual integration time, it’s not possible to compute the lux values or use autogain.

sensor_id()
Return the internal ID of the sensor, describing its model and revision number.

read([autogain][, raw])
Read a measurement from the sensor.

3

Adafruit MicroPython TSL2561 Documentation, Release 1.0

If raw is False (the default), returns a single floating point value denoting luminosity in lux. If it’s True,
returns a pair of integer numbers, corresponding to the readings of the broadband and infra-red channels,
respectively.

If autogain is set to True (deafult False), the sensor may repeat the measurement with a different
gain setting if the result is out of bounds for it.

May raise a ValueError if the sensor is saturated with raw=False.

If at the moment of calling this method, the sensor is inactive, it will be activated, the method will block
for a time necessary for the sensor to make the measurement, and then return and deactivate the sensor. If
the sensor was active, no waiting takes place – it’s up to the user to make sure the sensor had enough time
to make the measurement.

threshold([cycles] [, min_value][, max_value])
Get or set the interrupt settings.

If called without arguments, returns a triple of values.

The cycles argument specifies how many cycles are needed to trigger the interrupt. When set to 0, each
measurement will do it. If set to 1-15, the interrupt will be triggered only when so many measurements in
a row fall out of bounds. When set to -1, interrupts are disabled.

The min_value and max_value specify the window for the broadband channel to fit in.

Whenever the interrupt is activated, the Int pin of the sensor will be pulled low and stay in that state until
cleared. You can connect it to one of the pins and set a pin interrupt to detect that event.

Note that for the interrupt pin to work, the sensor must stay active.

interrupt(False)
Clears the interrupt state, bringing the Int pin back to neutral.

Classes for Different Packages

There are also TSL2561T, TSL2561FN, TSL2561CL and TSL2561CS classes for versions of the sensor using
different packages. They are the same, except for TSL2561CS, which uses different scale for lux computations.

4 Chapter 1. tsl2561 module

CHAPTER 2

Usage Examples

Connect your sensor in following way:

• 3vo 3V

• gnd gnd

• sda gpio4

• scl gpio5

• int any other pin (optional)

Now, to make basic measurement:

import tsl2561
from machine import I2C, Pin
i2c = I2C(Pin(5), Pin(4))
sensor = tsl256.TSL2561(i2c)
print(sensor.read())

To perform continuous measurement:

import time
sensor.active(True)
time.sleep_ms(500)
while True:

print(sensor.read())
time.sleep_ms(20)

To change the gain and integration time:

sensor.gain(16)
sensor.integration_time(402)

To use the interrupt pin (connected to gpio0 here):

5

Adafruit MicroPython TSL2561 Documentation, Release 1.0

def handler(pin):
print("interrupt!")
sensor.interrupt(False)

int_pin = Pin(0, Pin.IN, Pin.PULL_UP)
int_pin.irq(handler=handler, trigger=Pin.IRQ_FALLING)
sensor.active(True)
sensor.threshold(1, 10000, 30000)

6 Chapter 2. Usage Examples

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

7

Adafruit MicroPython TSL2561 Documentation, Release 1.0

8 Chapter 3. Indices and tables

Python Module Index

t
tsl2561, 3

9

Adafruit MicroPython TSL2561 Documentation, Release 1.0

10 Python Module Index

Index

A
active() (tsl2561.TSL2561 method), 3

G
gain() (tsl2561.TSL2561 method), 3

I
integration_time() (tsl2561.TSL2561 method), 3
interrupt() (tsl2561.TSL2561 method), 4

R
read() (tsl2561.TSL2561 method), 3

S
sensor_id() (tsl2561.TSL2561 method), 3

T
threshold() (tsl2561.TSL2561 method), 4
TSL2561 (class in tsl2561), 3
tsl2561 (module), 3

11

	tsl2561 module
	TSL2561
	Classes for Different Packages

	Usage Examples
	Indices and tables
	Python Module Index

